The RNA polymerase I transactivator upstream binding factor requires its dimerization domain and high-mobility-group (HMG) box 1 to bend, wrap, and positively supercoil enhancer DNA.

نویسندگان

  • C D Putnam
  • G P Copenhaver
  • M L Denton
  • C S Pikaard
چکیده

Upstream binding factor (UBF) is an important transactivator of RNA polymerase I and is a member of a family of proteins that contain nucleic acid binding domains named high-mobility-group (HMG) boxes because of their similarity to HMG chromosomal proteins. UBF is a highly sequence-tolerant DNA-binding protein for which no binding consensus sequence has been identified. Therefore, it has been suggested that UBF may recognize preformed structural features of DNA, a hypothesis supported by UBF's ability to bind synthetic DNA cruciforms, four-way junctions, and even tRNA. We show here that full-length UBF can also bend linear DNA to mediate circularization of probes as small as 102 bp in the presence of DNA ligase. Longer probes in the presence of UBF become positively supercoiled when ligated, suggesting that UBF wraps the DNA in a right-handed direction, opposite the direction of DNA wrapping around a nucleosome. The dimerization domain and HMG box 1 are necessary and sufficient to circularize short probes and supercoil longer probes in the presence of DNA ligase. UBF's sequence tolerance coupled with its ability to bend and wrap DNA makes UBF an unusual eukaryotic transcription factor. However, UBF's ability to bend DNA might explain how upstream and downstream rRNA gene promoter domains interact. UBF-induced DNA wrapping could also be a mechanism by which UBF counteracts histone-mediated gene repression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The RNA polymerase I transcription factor UBF is a sequence-tolerant HMG-box protein that can recognize structured nucleic acids

Upstream Binding Factor (UBF) is important for activation of ribosomal RNA transcription and belongs to a family of proteins containing nucleic acid binding domains, termed HMG-boxes, with similarity to High Mobility Group (HMG) chromosomal proteins. Proteins in this family can be sequence-specific or highly sequence-tolerant binding proteins. We show that Xenopus UBF can be classified among th...

متن کامل

DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein.

Mitochondrial transcription factor 1 (mtTF1) is the only accessory protein known to be required for accurate and efficient promoter recognition by mammalian mitochondrial RNA polymerase. It activates transcription by binding immediately upstream of transcriptional start sites and shows an inherent flexibility in primary DNA sequence requirement. By application of a purification strategy designe...

متن کامل

Activation of the HIV-1 enhancer by the LEF-1 HMG protein on nucleosome-assembled DNA in vitro.

Lymphoid enhancer-binding factor 1 (LEF-1) is a regulatory high mobility group (HMG) protein that activates the T cell receptor alpha (TCR alpha) enhancer in a context-restricted manner in T cells. In this paper we demonstrate that the distal region of the human immunodeficiency virus-1 (HIV-1) enhancer, which contains DNA-binding sites for LEF-1 and Ets-1, also provides a functional context fo...

متن کامل

RAP74 induces promoter contacts by RNA polymerase II upstream and downstream of a DNA bend centered on the TATA box.

RAP74, the large subunit of transcription factor IIF, associates with a preinitiation complex containing RNA polymerase II (pol II) and other general initiation factors. We have mapped the location of RAP74 in close proximity to promoter DNA at similar distances both upstream and downstream of a DNA bend centered on the TATA box. Binding of RAP74 induces a conformational change that affects the...

متن کامل

Comparative HMG-box sequences of the SRY gene between sheep, cattle and goats.

In mammals, sexual differentiation of the gonads during development depends on the presence of the Y chromosome (1). The testis-determining gene lies on the Y chromosome, and has been delimited in human to a 35-kilobase region near the pseudoautosomal boundary (2). SRY is a gene located in this region and both conserved during evolution and Y chromosome specific in a number of mammals (3). The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 14 10  شماره 

صفحات  -

تاریخ انتشار 1994